Decoupled Side Information Fusion for Sequential Recommendation

Yueqi Xie*
HKUST
yxieay@connect.ust.hk

Peilin Zhou*
Upstage
zhoupalin@gmail.com

Sunghun Kim HKUST hunkim@ust.hk

code: https://github.com/AIM-SE/DIF-SR.

SIGIR2022

Introduction

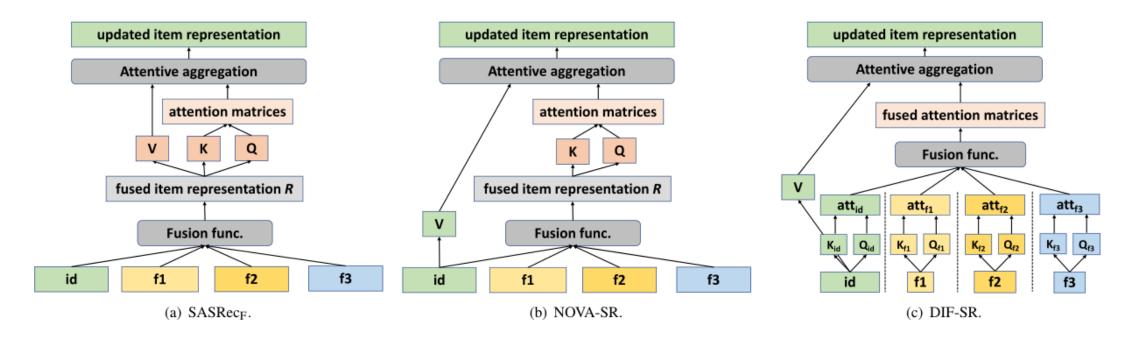


Figure 3: The comparison of item representation learning process of various solutions. (a) SASRec_F: SASRec_F fuses side information into item representation and uses the fused item representation to calculate key, query and value. (b) NOVA-SR: NOVA-SR uses the fused item representation for the calculation of key and query, and keeps value non-invasive. (c) DIF-SR: Instead of early fusion to get fused item representation, the proposed DIF-SR decouples the attention calculation process of various side information to generate fused attention matrices for higher representation power, avoidance of mixed correlation, and flexible training gradient.

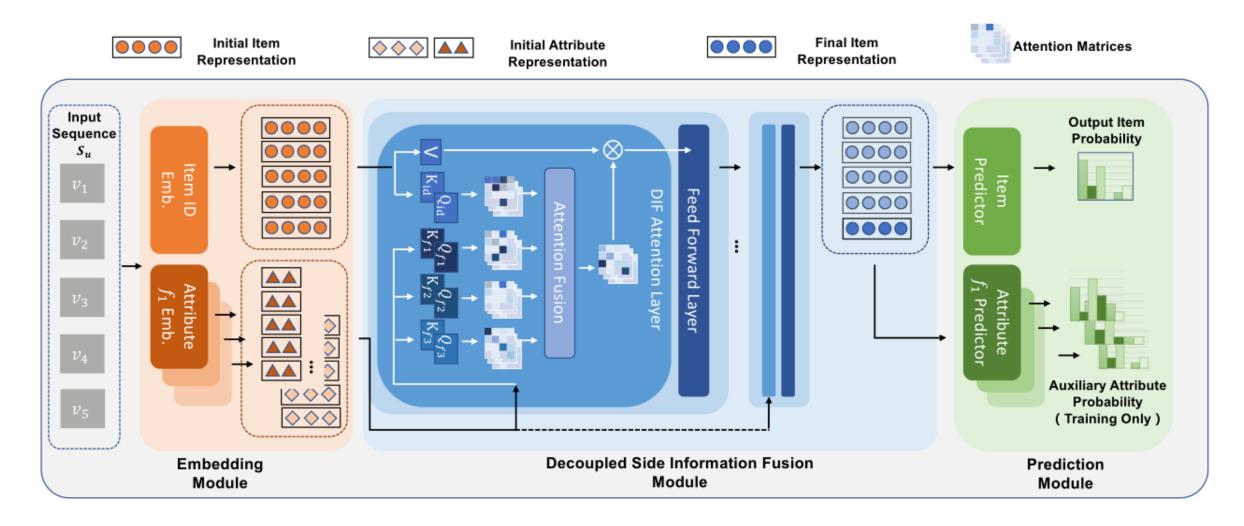
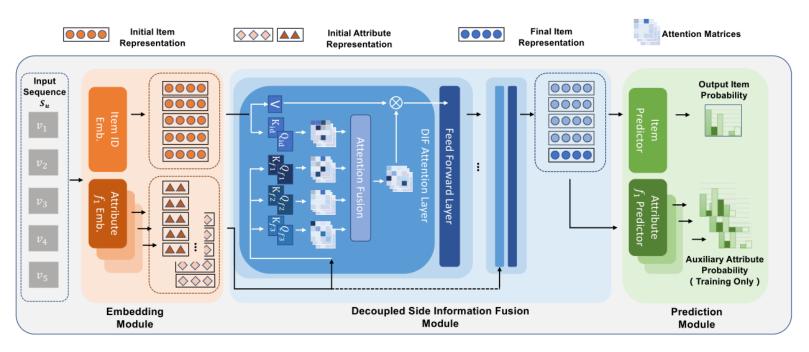


Figure 2: Overview of the proposed network.



Input:
$$\mathbb{S}_u = [v_1, v_2, \dots, v_n]$$

 $v_i = (I_i, f_i^{(1)}, \dots, f_i^{(p)})$

Figure 2: Overview of the proposed network.

$$E^{ID} = \mathcal{E}_{id}([I_1, I_2, \dots, I_n]),$$

$$E^{f_1} = \mathcal{E}_{f_1}([f_1^{(1)}, f_2^{(1)}, \dots, f_n^{(1)}]),$$

$$\dots$$

$$E^{f_p} = \mathcal{E}_{f_p}([f_1^{(p)}, f_2^{(p)}, \dots, f_n^{(p)}]),$$

$$R_{i+1}^{(ID)} = LN(FFN(DIF(R_i^{(ID)}, E^{f_1}, \dots, E^{f_p})))$$

$$R_1^{(ID)} = E^{ID}$$
(3)

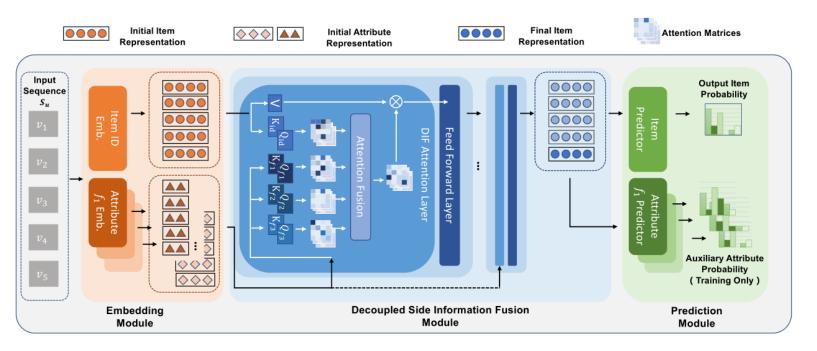


Figure 2: Overview of the proposed network.

$$\operatorname{att}_{ID}^i = (R^{(ID)}W_Q^i)(R^{(ID)}W_K^i)^\top \quad \text{(4)}$$

$$\text{att}_{f1}^{i} = (E^{f1}W_{Q}^{(f1)i})(E^{f1}W_{K}^{(f1)i})^{\top},$$

$$\cdots,$$

$$\text{att}_{fp}^{i} = (E^{fp}W_{Q}^{(fp)i})(E^{fp}W_{K}^{(fp)i})^{\top}.$$

$$(5)$$

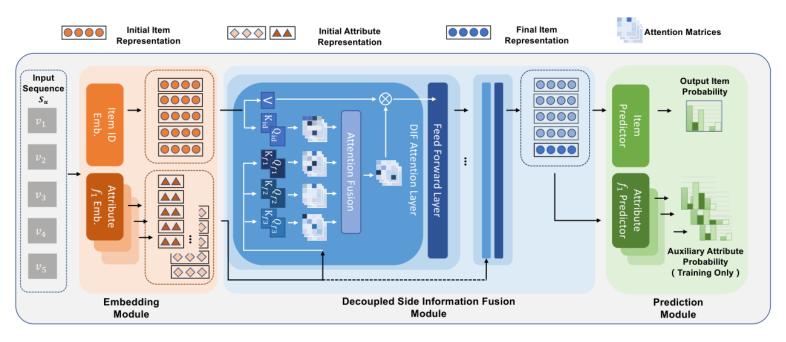


Figure 2: Overview of the proposed network.

DIF_attⁱ =
$$\mathcal{F}(\text{att}_{ID}^i, \text{att}_{f1}^i, \dots, \text{att}_{fp}^i),$$

DIF_headⁱ = $\sigma(\frac{\text{DIF_att}^i}{\sqrt{d}})(R^{(ID)}W_V^i).$

(6)

$$\mathcal{F}_{\mathrm{add}}(f_1,\ldots,f_m) = \sum_{i=1}^m f_i$$

$$\mathcal{F}_{concat}(f_1,\ldots,f_m) = \mathbf{FC}(f_1 \odot \cdots \odot f_m)$$

$$\mathcal{F}_{\text{gating}}(f_1, \dots, f_m) = \sum_{i=1}^m G^{(i)} f_i$$
$$G = \sigma(FW^F)$$

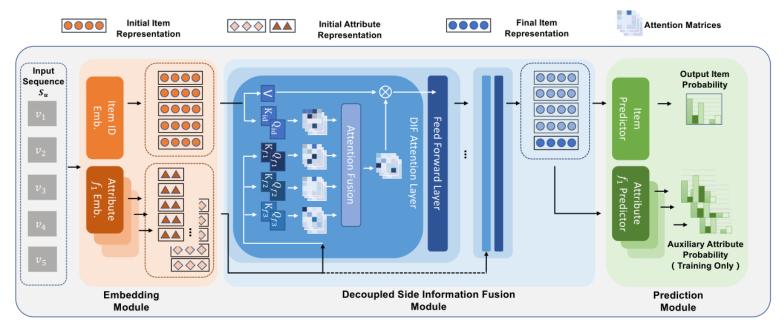


Figure 2: Overview of the proposed network.

$$\hat{y} = \operatorname{softmax}(M_{id}R_L^{(ID)}[n]^\top) \tag{7}$$

$$\hat{y}^{(fj)} = \sigma(W_{fj} R_L^{(ID)} [n]^\top + b_{fj})$$
 (8)

$$L_{id} = -\sum_{i=1}^{|I|} y_i \log(\hat{y}_i) \tag{9}$$

$$L_{fj} = -\sum_{i=1}^{|fj|} y_i^{(fj)} \log(\hat{y}_i^{fj}) + (1 - y_i^{(fj)}) \log(1 - \hat{y}_i^{(fj)})$$
 (10)

$$L = L_{id} + \lambda \sum_{j=1}^{p} L_{fj}$$
 (11)

Table 1: Statistics of the datasets after preprocessing.

Dataset	Beauty	Sports	Toys	Yelp
# Users	22,363	35,598	19,412	30,499
# Items	12,101	18,357	11,924	20,068
# Avg. Actions / User	8.9	8.3	8.6	10.4
# Avg. Actions / Item	16.4	16.1	14.1	15.8
# Actions	198,502	296,337	167,597	317,182
Sparsity	99.93%	99.95%	99.93%	99.95%

Table 2: Overall performance. Bold scores represent the highest results of all methods. Underlined scores stand for the highest results from previous methods.

Dataset	Metric	GRU4Rec	Caser	BERT4Rec	$GRU4Rec_F$	SASRec	$SASRec_F$	S^3Rec	NOVA	ICAI	DIF-SR
Beauty	Recall@10	0.0530	0.0474	0.0529	0.0587	0.0828	0.0719	0.0868	0.0887	0.0879	0.0908
	Recall@20	0.0839	0.0731	0.0815	0.0902	0.1197	0.1013	0.1236	0.1237	0.1231	0.1284
Deadly	NDCG@10	0.0266	0.0239	0.0237	0.0290	0.0371	0.0414	0.0439	0.0439	0.0439	0.0446
	NDCG@20	0.0344	0.0304	0.0309	0.0369	0.0464	0.0488	0.0531	0.0527	0.0528	0.0541
	Recall@10	0.0312	0.0227	0.0295	0.0394	0.0526	0.0435	0.0517	0.0534	0.0527	0.0556
Cmonto	Recall@20	0.0482	0.0364	0.0465	0.0610	0.0773	0.0640	0.0758	0.0759	0.0762	0.0800
Sports	NDCG@10	0.0157	0.0118	0.0130	0.0199	0.0233	0.0235	0.0249	0.0250	0.0243	0.0264
	NDCG@20	0.0200	0.0153	0.0173	0.0253	0.0295	0.0286	0.0310	0.0307	0.0302	0.0325
	Recall@10	0.0370	0.0361	0.0533	0.0492	0.0831	0.0733	0.0967	0.0978	0.0972	0.1013
Toxic	Recall@20	0.0588	0.0566	0.0787	0.0767	0.1168	0.1052	0.1349	0.1322	0.1303	0.1382
Toys	NDCG@10	0.0184	0.0186	0.0234	0.0246	0.0375	0.0417	0.0475	0.0480	0.0478	0.0504
	NDCG@20	0.0239	0.0238	0.0297	0.0316	0.0460	0.0497	0.0571	0.0567	0.0561	0.0597
Yelp	Recall@10	0.0361	0.0380	0.0524	0.0361	0.0650	0.0413	0.0589	0.0681	0.0663	0.0698
	Recall@20	0.0592	0.0608	0.0756	0.0578	0.0928	0.0675	0.0902	0.0964	0.0940	0.1003
	NDCG@10	0.0184	0.0197	0.0327	0.0182	0.0401	0.0216	0.0338	0.0412	0.0400	0.0419
	NDCG@20	0.0243	0.0255	0.0385	0.0236	0.0471	0.0282	0.0416	0.0483	0.0470	0.0496

Table 3: Performance comparison of self-attention based sequential models with their DIF & AAP incorporated version on Beauty, Sports and Toys datasets.

Dataset	Metric	DIF-SASRec		DIF-BERT4Rec		Improv.		
Dataset		w/o	\mathbf{w}	w/o	w	DIF-SASRec	DIF-BERT4Rec	
	Recall@10	0.0828	0.0908	0.0529	0.0579	9.66%	9.45%	
	Recall@20	0.1197	0.1284	0.0815	0.0915	7.27%	12.27%	
Donutu	NDCG@10	0.0371	0.0446	0.0237	0.0279	20.22%	17.72%	
Beauty	NDCG@20	0.0464	0.0541	0.0309	0.0363	16.59%	17.48%	
	Recall@10	0.0526	0.0556	0.0295	0.0394	5.70%	33.56%	
	Recall@20	0.0773	0.0800	0.0465	0.0611	3.49%	31.40%	
Consulto	NDCG@10	0.0233	0.0264	0.0130	0.0198	13.30%	52.31%	
Sports	NDCG@20	0.0295	0.0325	0.0173	0.0252	10.17%	45.66%	
	Recall@10	0.0831	0.1013	0.0533	0.0599	21.90%	12.38%	
	Recall@20	0.1168	0.1382	0.0787	0.0851	18.32%	8.13%	
Т	NDCG@10	0.0375	0.0504	0.0234	0.0324	34.40%	38.46%	
Toys	NDCG@20	0.0460	0.0597	0.0297	0.0387	29.78%	30.30%	

Table 4: Ablation study of DIF and AAP on Yelp, Sports and Beauty datasets.

Settings Yelp		Spo	rts	Beauty			
DIF	AAP	Recall@20	$+\Delta$	Recall@20	$+\Delta$	Recall@20	$+\Delta$
Х	Х	0.0663	-	0.0621	-	0.0996	-
X	/	0.0663	+0%	0.0754	+21.42%	0.0991	-0.50%
/	×	0.0968	+46.00%	0.0767	+23.51%	0.1240	+24.50%
✓	✓	0.1003	+51.28%	0.0800	+28.82%	0.1284	+28.92%

Table 5: Performance comparison of using different kinds of side information on Yelp dataset.

Side-info	Recall@10	Recall@20	NDCG@10	NDCG@20
Position	0.0655	0.0954	0.0405	0.048
Position + Categories	0.0698	0.1003	0.0419	0.0496
Position + City	0.0691	0.1001	0.0415	0.0493
Position + Categories + City	0.0699	0.1010	0.0421	0.0499

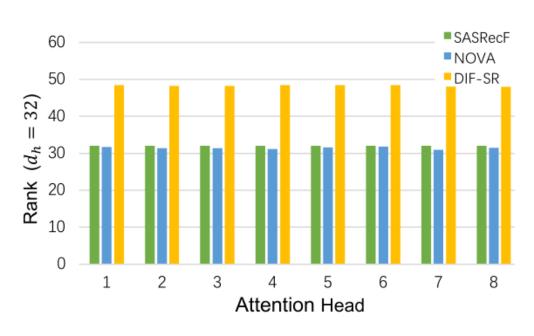


Figure 1: Rank of attention matrices: A comparison of the average rank of attention score matrices of early-integrated embedding based solutions, i.e., SASRecF and NOVA, and our proposed DIF-SR. The early-integration of embeddings leads to lower rank of the attention matrices and limits the expressiveness.

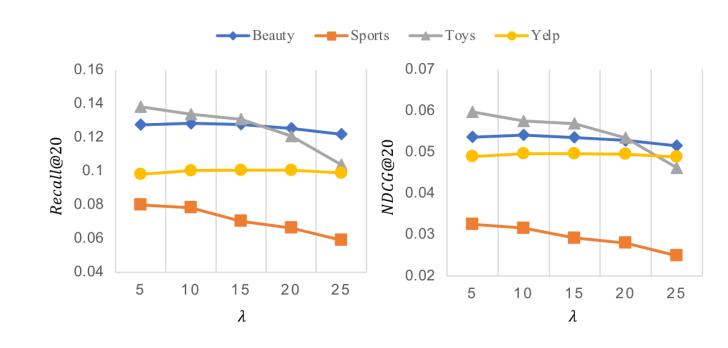


Figure 4: Effect of balance parameter λ .

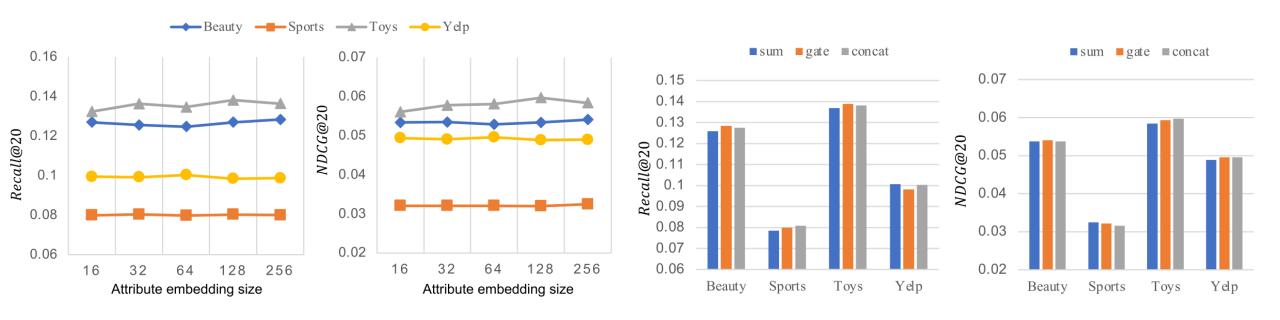


Figure 5: Effect of attribute embedding size d_f .

Figure 6: Effect of fusion functions \mathcal{F} .

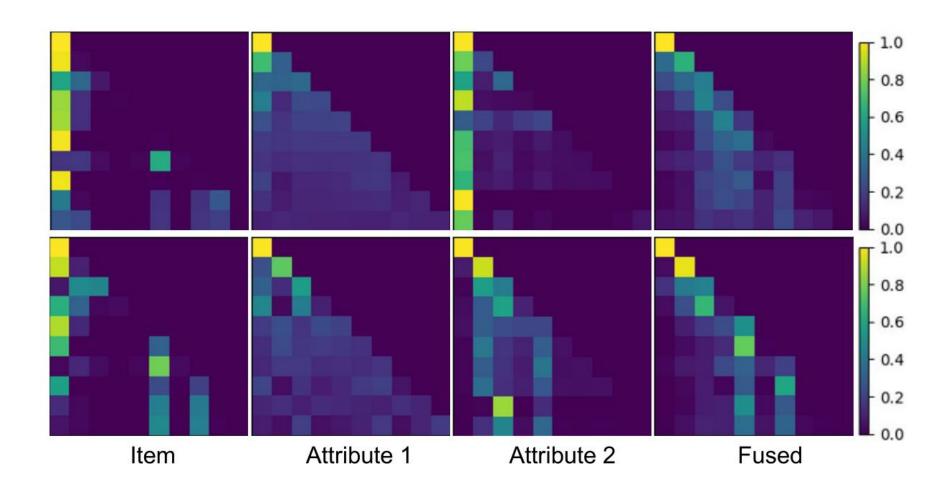


Figure 7: Visualization of sampled attention matrices.

Thanks

```
INFO best valid: {'recall@3': 0.0518, 'recall@5': 0.0768, 'recall@10': 0.113, 'recall@20': 0.1585, 'ndcg@3': 0.0333, 'ndcg@5': 0.0
15 Nov 16:18
435, 'ndcg@10': 0.0553, 'ndcg@20': 0.0667}
                 INFO test result: {'recall@3': 0.0402, 'recall@5': 0.0579, 'recall@10': 0.088, 'recall@20': 0.1268, 'ndcg@3': 0.0266, 'ndcg@5': 0.0
15 Nov 16:18
338, 'ndcg@10': 0.0435, 'ndcg@20': 0.0533}
1030 3010367555<u>31</u>
              INFO best valid: {'recall@3': 0.0295, 'recall@5': 0.0432, 'recall@10': 0.0672, 'recall@20': 0.098, 'ndcg@3': 0.0181, 'ndcg@5': 0.0238, 'ndcg@10': 0.0315, 'ndc
15 Nov 21:08
g@20': 0.0393}
15 Nov 21:08
              INFO test result: {'recall@3': 0.024, 'recall@5': 0.0343, 'recall@10': 0.053, 'recall@20': 0.0762, 'ndcg@3': 0.0148, 'ndcg@5': 0.019, 'ndcg@10': 0.025, 'ndcg@2
0': 0.0308}
7070.024189710617
(lmq) bigdata2@bigdata2:~/lmq/DIF-SR-main$
                 INFO best valid: {'recall@3': 0.0559, 'recall@5': 0.0821, 'recall@10': 0.1191, 'recall@20': 0.1632, 'ndcg@3': 0.0362, 'ndcg@5': 0.
16 Nov 10:44
047, 'ndcg@10': 0.0589, 'ndcg@20': 0.07}
                 INFO test result: {'recall@3': 0.0487, 'recall@5': 0.0688, 'recall@10': 0.0992, 'recall@20': 0.135, 'ndcg@3': 0.0318, 'ndcg@5': 0.0
16 Nov 10:44
401, 'ndcg@10': 0.0499, 'ndcg@20': 0.0589}
4579,508291959763
(lmq) bigdata2@bigdata2:~/lmq/DIF-SR-main$
```

```
17 Nov 12:11 INFO best valid : {'recall@3': 0.0276, 'recall@5': 0.0411, 'recall@10': 0.0639, 'recall@20': 0.0969, 'ndcg@3': 0.0167, 'ndcg@5': 0.0223, 'ndcg@10': 0.0296, 'ndcg@20': 0.0379}
17 Nov 12:11 INFO test result: {'recall@3': 0.027, 'recall@5': 0.0377, 'recall@10': 0.0579, 'recall@20': 0.0824, 'ndcg@3': 0.0167, 'ndcg@5': 0.0212, 'ndcg@10': 0.0277, 'ndcg@20': 0.0338}
3215.3000197410583
(lmq) bigdata2@bigdata2:~/lmq/DIF-SR-main$
```